
Chemical Engineering Journal 106 (2005) 13–24

Use of state estimation for inferential nonlinear MPC: a case study
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Abstract

Model predictive control (MPC) has become very popular in process industry and academia because it is an optimizing control technique
which can handle hard constraints as well as time delays and mild nonlinearities. Linear MPC may control nonlinear processes by obtaining a
linearized model of the plant, however, this approach is only valid in a limited region. In the presence of marked nonlinearities, a substantial
improvement can be achieved by using the whole knowledge of the process dynamics.

The use of a nonlinear model for MPC involves the knowledge of the complete state vector and the most significative perturbations in order
to obtain the best performance. However, this information may not be directly available through measurement. In this paper, we propose the
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se of a nonlinear estimator to update the state vector and to infer the unmeasured perturbations.
All the development herein presented is in the context of the control of an open-loop unstable nonlinear reactor with a measure

n the controlled variable.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Most control applications involve hard constraints on con-
rols and states, however, there is a shortage of design pro-
edures to deal with such constraints. To cope with this fact,
odel predictive control (MPC) has emerged and now it is
idely adopted. It is a well-known result that MPC has often
hown to provide improved performance than conventional
eedback control schemes, specially in the presence of re-
trictions related to valve sizes and actuator dynamics. The
se of MPC in the chemical engineering field started in the
rocess industries, which is not a common fact among other
ontrol techniques. This situation is basically due to flex-
ble constraint-handling capabilities of MPC as well as its
obustness properties[1]. The essential feature of MPC is
he employment of an explicit model to predict the effect of
uture control actions on the outputs. This capacity for predic-
ion allows solving optimal control problems on-line, where a
pecified objective function is minimized over a future hori-
on. As regards linear plant control, superior behavior has

∗ Corresponding author. Tel.: +54 291 4595153; fax: +54 291 4595154.
E-mail address:figueroa@uns.edu.ar (J.L. Figueroa).

been achieved using MPC in the case of non-minimum p
processes or systems with input constraints where futu
points are known, as well as for stabilizing unstable lin
plants[2]. Moreover, this control scheme has also prove
be useful for regulating many nonlinear plants. Many re
attempts to include nonlinear models in MPC have show
perior performance, particularly for applications where v
ing operating conditions over nonlinear regions are expe
[3–5]. In this article we will use a first principle nonline
model to predict the behavior of the process. In the appr
herein followed, the knowledge of the complete state
tor and the most relevant perturbations is crucial in ord
obtain good performance of the control strategy.

Because the inherent feature of MPC is the reiterate
timization of an open-loop performance objective over
prediction horizon, there are many methods available i
der to update the optimization problem. For instance, the
of the model’s initial conditions, estimation of model’s
rameters and/or states or inference of output disturbance
be performed. The advantages of employing state estim
instead of the frequently used approach of the additive
put disturbance (commonly used in dynamic matrix cont
have been shown by Ricker[6]. He used linear, time-invaria
385-8947/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2004.11.002
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state-space models and applied state estimation theory. Sistu
and Bequette[7] addressed many important issues in nonlin-
ear predictive control of chemical processes. They treated the
selection of initial state conditions as a very important fact,
especially under plant/model mismatch. To cope with this is-
sue they introduced a nonlinear programming-based process
identification scheme.

The inclusion of a state observer is an interesting alter-
native for estimating state variables, particularly when many
of them are unmeasurable. The use of state observers based
on measured outputs has already been considered for solving
state-space formulations of MPC problems. However, those
approaches are basically limited to the use of Kalman filters
[8]. A particular drawback in using the Kalman filter for non-
linear control purposes is the linear nature of the estimator.
Gattu and Zafiriou[9] introduced state estimation into non-
linear quadratic dynamic matrix control (NLQDMC). They
used a steady-state Kalman filter which is based on a locally
linearized model and it must be redesigned at each time step.
Additionally, the assumptions on the state noise can lead to
significant biases in the state estimates, limiting its applica-
bility and performance. Moreover, when linearization tech-
niques are applied, convergence and speed of convergence
are local properties, i.e. the estimation error can converge in
a given time interval and diverge in another one.
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2. Problem statement: the stirred-tank reactor
(CSTR)

The simulated continuous stirred-tank reactor (CSTR)
process consists of an irreversible, exothermic reaction (A→
B), in a constant volume reactor cooled by a single coolant
streamqc. The whole process can be modeled by the follow-
ing equations[16]:

Ċ = q

V
[Cf − C] − k0C exp

(−E
RT

)
(1)

Ṫ = q

V
(T0 − T ) − k0�H

ρCp
C exp

(−E
RT

)

+ ρcCpc

ρCpV
qc

[
1 − exp

(
− hA

qcρcCpc

)]
(Tc0 − T ) (2)

The state variablesC andT stand for the reactant concentra-
tion and the reactor temperature, respectively. The symbolqc
represents coolant flow rate and the other symbols are con-
stant parameters whose values are defined inTable 1.

An important fact regarding the implementation of the
control action is the existence of a time delay (td = 0.5 min) in
the concentration measurement, henceCmeas(t) = C(t − td).
The objective is to control the concentrationC by manipulat-
i

ration
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In spite of the fact that theories and applications for lin
ystems are well developed, the highly nonlinear essen
any processes has given rise to the development of non
bservers[10]. These observers are designed in such a

hat they can cope with the intrinsic nonlinearities and
e useful, for example, for on-line estimation in chem
rocesses[11,12].

In this work, we present a nonlinear efficient s
stimator to provide to the nonlinear model predic
ontroller (NMPC) the estimated value of the internal s
nd the most significative disturbances of the process
bserver implementation is simple and it requires s
omputational effort.

The observer/controller design can be applied for a ge
ype of nonlinear process models. In this paper we prese
pproach in the form of a case study: the control of an o

oop unstable reactor. It must be highlighted that this pro
as been widely studied because it is highly nonlinear, a

s known to be an interesting challenge to overcome by
ew control technique proposal due to the following featu

The controlled output is measured with a significant de
The process includes a crucial perturbation which is
measurable.
The process is highly nonlinear at the operating point
close to an unstable region.

he work is organized as follows. The reactor is present
ection 2. In Section 3the observer design procedure is d
ith. The controller synthesis is developed inSection 4. The

esults are presented via simulation inSection 5. Finally, in
ection 6, the conclusions are drawn.
ng the coolant flow rateqc.
The disturbances are the unmeasured feed concent

f and the measured coolant temperatureTc0. This mode
s a modified version of the first tank of a two-tank CS
xample by Henson and Seborg[13]. However, in the origina
odel the time delay was zero, which was a simplifica

or control purposes.
The process dynamics are nonlinear because the re

ate is governed by the Arrhenius law. That is why the CS
xhibits some operational and control problems. The ste
tate values forC versus the inputqc are plotted inFig. 1
hich shows the reactor presents multiplicity with respe

he coolant flow rate. The CSTR modeled by Eqs.(1) and (2)
ehaves as an open-loop unstable system if the concen

nside the reactor is between 0.14 and 0.92. In particula
oint A (qc ≈ 111.85 l min−1) in Fig. 1, is a Hopf bifurcation
oint. In our application, one of the objectives is to ope

able 1
rocess parameters

Parameter Value

Process flow rate,q (l min−1) 100
Feed concentration,Cf (mol l−1) 1
Feed temperature,T0 (K) 350
Inlet coolant temperature,Tc0 (K) 350
CSTR volume,V (l) 100
Heat transfer term,hA (cal min−1 K−1) 7 × 105

Reaction rate constant,k0 (min−1) 7.2 × 1010

Activation energy term,E/R (K) 104

Heat of reaction,�H (cal mol−1) −2 × 105

Liquid densities,ρ, ρc (g l−1) 103

Specific heats,Cp,Cpc (cal g−1 K−1) 1
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Fig. 1. Steady-state values (C vs.qc).

the process at constant concentrationC = 0.1 mol l−1, which
implies thatqc = 103.41 l min−1.

Posed in these terms, the use of this model for nonlinear
MPC presents two main difficulties:

• Due to the high nonlinearity (and the nearness to the un-
stable operation region), it is necessary to know precisely
the process state and the perturbations values.

• The measurement delay of the controlled variable limits
the performance achievable by the control algorithm.

To overcome these obstacles, the proposed control strategy
includes the design of an observer to infer the values of the
product concentration and the feed concentration. In the next
section, we describe this observer.

3. Nonlinear estimation

The objective of this section is to design an observer for
estimating the unmeasured states to be used in the control
calculation. Let us consider that the nonlinear model for the
process is given by

ẋ = f (x, u), y = h(x) (3)

where the vectorx ∈ 
n stands for the state vector and the in-
p plish
t

3

nnot
b stem

(3) is posed as follows:

ẋu = Fu(xu, x̄u, u), ˙̄xu = F̄u(xu, x̄u, u),

y = H(xu, x̄u)

wherexu stands for the unmeasured states in vectorx, and
the rest of the states are symbolized as ¯xu. Provided that ¯xu
can be written as

x̄u = H̄(xu, y)

then

ẏ = ∂H

∂xu
Fu + ∂H

∂x̄u
F̄u

�= Ψ (xu, H̄(xu, y), u)
�= g0(xu, y, u),

ẋu = Fu(xu, H̄(xu, y), u)
�= gx(xu, y, u)

Therefore, the system can be rewritten as follows:

ẋu = gx(xu, y, u) (4)

ẏ = g0(xu, y, u) (5)

The construction of the nonlinear observer herein proposed
makes use of a change of coordinates, which has been fre-
quently used in the design of high gain nonlinear observers
[14,15]. Then, the following transform is introduced:
utu ∈ 
 represents the manipulated variable to accom
he control objective andy ∈ 
 is the system’s output.

.1. Model reformulation

The objective is to estimate only those states that ca
e measured. Then, a suitable reformulation of the sy
z1
�= g0(xu, y, u)

z2
�= g1(xu, y, u)

...

zn−1
�= gn−2(xu, y, u)

(6)
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This transform can be expressed in brief asz = γ(xu, y, u) =
[ g0 g1 · · · gn−2]T ; z ∈ 
n−1.

The dynamics in thez-domain are given by:

ẏ
�= z1 = g0(xu, y, u)

ż1 =
[
∂g0

∂xu
gx(xu, y, u) + ∂g0

∂y
g0(xu, y, u) + ∂g0

∂u
u̇

]

�= g1(xu, y, u) + ρ1(xu, y, u) + ϕ1(xu, y, u)u̇

ż2 =
[
∂g1

∂xu
gx(xu, y, u) + ∂g1

∂y
g0(xu, y, u) + ∂g1

∂u
u̇

]

�= g2(xu, y, u) + ρ2(xu, y, u) + ϕ2(xu, y, u)u̇
...

żn−1 =
[
∂gn−2

∂xu
gx(xu, y, u)+∂gn−2

∂y
g0(xu, y, u) + ∂gn−2

∂u
u̇

]

żn−1
�= gn−1(xu, y, u) + ρn−1(xu, y, u) + ϕn−1(xu, y, u)u̇

(7)

where

∂gj−1

∂xu
gx = gj,

∂gj−1

∂y
g0 = ρj, ∂gj−1

∂u
= ϕj,

j = 1, . . . , n

I i

t g
x

d

z

w
[

A

3

tate
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T
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t s to be

calculated for guaranteeing the estimation error convergence.
However, the observer is implemented through Eq.(10) to
diminish the influence of measurement noise on the estimates.

3.3. Convergence of estimation error

Although the observer is implemented by using Eq.(10),
Eq.(9) can be used to designK:

ż = Az+ ρ(z, y, u) + ϕ(z, y, u)u̇,

˙̂z = Aẑ+ ρ(ẑ, y, u) +KC(z− ẑ) (11)

Let e
�= z− ẑ be the estimation error inz coordinates, then

ė
�= ż− ˙̂z = Ace+�ρ + ϕ(z, y, u)u̇ (12)

withC = [10 · · · 0],�ρ =� ρ(z, y, u) − ρ(ẑ, y, u) andAc =
(A−KC). To accomplish the observer’s stability analysis,
the dynamics of the errore(t) in Eq.(12) is evaluated. In this
way, a connection between the design parameterK and the
stability of the estimation algorithm is obtained. A detailed
description of the analysis procedure is provided inAppendix
A. It should be noted that if the transformed system in Eq.(8)
does not depend on ˙u (that indeed occurs in many systems),
then the estimation error converges asymptotically towards
zero ast → ∞. Otherwise, there is an ultimate bound which
c
A

3
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W -
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t
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z

z

f ∂γ/∂xu is not singular in (xu, y, u), then there existsγ such
hatxu = γi(z, y, u) is the function which allows calculatin
u from z, y andu. Therefore, the process model in thez-
omain is:

˙ = Az+ ρ(z, y, u) + ϕ(z, y, u)u̇ (8)

ith z ∈ 
n−1, ρ = [ ρ1 · · · ρn−1 ]T|xu=γi(z,y,u), ϕ =
ϕ1 · · · ϕn−1 ]T|xu=γi(z,y,u) andA ∈ 
(n−1)×(n−1):

=




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 · · · · · · · · · 1

0 · · · · · · · · · 0




.2. Observer

The following observer is proposed to estimate the s
ector in the transform domainz:

˙̂ = Aẑ+ ρ(ẑ, y, u) +K[ẏ − ẑ1], ν
�= ẑ−Ky (9)

hen,

˙ = ˙̂z−Kẏ, ν̇ = A(ν +Ky) + ρ(ν +Ky, y, u)

−K(ν1 + k1y) (10)

ith k1 the first element of vectorK.
Note that in the proposed observer, the constantK vector is

he unique parameter to be designed. This parameter ha
an become smaller by changing the design parameterK (see
ppendix A).

.4. Application to the CSTR

The state observer developed above is dedicated to t
imation of the internal state of the open-loop unstable CS

e know from the description inSection 2, that the tempera
ureT inside the reactor is measured on-line, but the mea
ent ofC is significantly delayed. Moreover, the system
erturbed by the unknown inlet concentrationCf . Therefore

he goal is to obtain an on-line estimation ofC andCf based
n the measured variableT. To accomplish the estimation, t
tate vector is expanded to include the disturbanceCf . Then,
he estimated vector isxu = [C Cf ]. Under the assumptio
hat there is no information about the dynamics ofCf , then it
s assumed slowly varying (i.e.̇Cf = 0).

For simplicity and to achieve better convergence pro
ies, we choose a suitable transform to eliminate in Eq(8)
he dependence on ˙u:

1 = q

V
(T0 − T ) − k0�H

ρCp
C e−E/RT ,

2 =
(

− q
V

− k0�H

ρCp
C
E

RT 2
e−E/RT

)

×
[
q

V
(T0 − T ) − k0�H

ρCp
C e−E/RT

]

− k0�H

ρCp
Ċ e−E/RT
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This selection coincides with the expressions ofṪ and T̈
without including the terms that contain the inputqc. Then,
the original states can be recovered from the transformed ones
as follows:

C = eE/RT

β1
(α1T − α1Tf + z1),

Cf = −eE/RT

α1β1

[
(α1T − α1Tf + z1)

(
−α1 − k0 e−E/RT

+ Ez1

RT 2

)
− α1z1 − z2

]

with α1 = q/V andβ1 = −�Hk0/ρCp. In this way, a sta-
ble reduced-order observer (i.e., only unmeasured variables
are estimated) is applied for the nonlinear system to attain
on-line estimation of the unmeasured process state and per-
turbation. Note that nonlinear observers such as the ones in-
troduced in[14,15]are not suitable for this application. Be-
cause there is only one measured state and two variables to
estimate, those full-order observers (i.e., both measured and
unmeasured vectors are estimated) would not satisfy the re-
quirement due to the observability constraint. Moreover, the
reduced-order observer like the one developed in[15] cannot
estimate bothC andCf , and other reduced-order techniques
s s
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Although in many applications in the field of nonlinear
processes the control problem is solved via Taylor lineariza-
tion techniques[17], it is possible to achieve an improved
control performance from an exploitation of the exact non-
linear model structure using nonlinear control techniques. In
NMPC the model of the process is formulated through non-
linear differential equations. This control strategy involves
a computation at each sampling time in order to predict the
values of future outputs and the minimization of outputs de-
viations from their setpoints. This information is obtained for
calculating the future manipulated variables.

The sequence of steps to follow in order to achieve the
control action can be described as follows. First of all, the
nonlinear original model of statesx, the outputy and control
inputu is the one given by Eq.(3):

ẋ = f (x, u), y = h(x)

The Euler discretization of this system gives:

x((k + 1)�t) = F (x(k �t), u(k �t)),

y(k �t) = h(x(k �t))

where�t is the sampling time. For brevity, the model can be
written as follows:

x

T on
i

w -
m
c
u

p c-
t lved
s ns
a ves.
I atic
f

L

φ

w
r lty
m lty
m ite
uch as the ones introduced in[12,11]would involve tediou
alculation and the convergence of the estimation erro
ards zero cannot be achieved.
Note that the observer herein introduced can be e

mplemented and it is only based on the temperature
urement. Moreover, the observer is built using the w
rocess model, and this nonlinear procedure avoids lo

nformation about the dynamics as well as simplificatio
rder reduction or the frequently used linearization meth

Once the internal state of the system and perturbatio
e observed, the nonlinear model predictive control t
ique based on state knowledge can be performed to ac

he desired control goal. This will be studied in the n
ection.

. Nonlinear model predictive controller

When applying MPC, the controller is designed in or
o generate a manipulated variable profile to optimize s
pen-loop performance objective on a time intervalP known
s prediction horizon. The feedback loop is incorporated
ause the measurement is used to update the optimiz
roblem for the next time step. In the MPC strategy, the
ent control action arises from the solution of an on-line, fi
orizon open-loop optimal control problem. This problem
olved at each sampling instant, using the current state
lant as the initial state. Once the optimization is perform
n optimal control sequence is obtained and only the
ontrol in the sequence is implemented on the plant.
(k + 1) = F (x(k), u(k)), y(k) = h(x(k)) (13)

he optimization problem for the typical NMPC formulati
s [19]:

min
u(k|k),u(k+1|k),...,u(k+M−1|k)

J = φ[y(k + P |k)]

+
P−1∑
j=0

L[y(k + j|k), u(k + j|k),�u(k + j|k)], (14)

hereu(k + 1|k) is the inputu(k + 1) calculated from infor
ation available at timek, y(k + 1|k) the outputy(k + 1) cal-

ulated from information available at timek,�u(k + j|k) =
(k + j|k) − u(k + j − 1|k), M the control horizon,P the
rediction horizon andφ andL are (possibly) nonlinear fun

ions of their arguments. The optimization problem is so
ubject to the constraints discussed below. The functioφ
ndL can be chosen to satisfy a wide variety of objecti

n many applications, it is meaningful to consider quadr
unctions of the following form:

= [y(k + j|k) − ys(k)]
TQ[y(k + j|k) − ys(k)]

+ [u(k + j|k) − us(k)]
TR[u(k + j|k) − us(k)]

+�u(k + j|k)TS �u(k + j|k) (15)

= [y(k + P |k) − ys(k)]
TQ[y(k + P |k) − ys(k)], (16)

hereus(k) andys(k) are steady-state targets foru and y,
espectively.Q is a symmetric positive semi-definite pena
atrix on the states,R a symmetric positive definite pena
atrix on the inputs, andSa symmetric positive semi-defin
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Fig. 2. Regulation results. NMPC based on RLS (full line) and NMPC based on NO (dotted line).

penalty matrix on the rate of change in the inputs. The prin-
cipal controller tuning parameters areM,P,Q,R, S and the
sample period�t. It is important to note that this objective
function is the most used in the literature, however, some
authors use a more general approach and replace the output
vectory(k + j|k) by the state vectorx(k + j|k). This equiva-
lent formulation has the drawback that in some applications
the reference value for the states are not available (see exam-
ple section).

The predicted output is obtained from the nonlinear model
given by Eq.(13). Successive iterations of the model equa-

tions yield

y(k + 1|k) = h[x(k + 1|k)] = h[F [x(k|k), u(k|k)]]
≡ G1[x(k), u(k|k)]

y(k + 2|k) = G1[x(k + 1|k), u(k + 1|k)]
= G1[F [x(k|k), u(k|k)], u(k + 1|k)]
≡ G2[x(k), u(k|k), u(k + 1|k)]

...

y(k + j|k) = Gj[x(k), u(k|k), . . . , u(k + j − 1|k)],

-based
Fig. 3. Observer
 NMPC regulation.
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Fig. 4. Influence of the disturbance on the controller’s performance.

wherex(k|k) = x(k) is a vector of current state variables. The
control horizonM should be less than the prediction horizon
P. Then, the output prediction is generated by setting in-
puts beyond the control horizon equal to the last computed
value:u(k + j|k) = u(k +M − 1|k),M ≤ j ≤ P . Note that
the predictiony(k + j|k) depends on the current state vari-
ables, as well as the calculated input sequence. Therefore,
NMPC requires measurements or estimates of the state vari-
ables. This is discussed in more detail below.

Solution of the NMPC problem yields the input se-
quence:u(k|k), u(k + 1|k), . . . , u(k +M − 1|k). Only the
first input vector in the sequence is actually implemented:
u(k) = u(k|k). Then, the prediction horizon is moved for-
ward one time step, and the problem is solved using
new process measurements. This receding horizon for-
mulation yields improved closed-loop performance in the
presence of unmeasured disturbances and modeling er-
rors.

e of the
Fig. 5. Influenc
 observer’s gain.
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Fig. 6. Influence of the tuning parameters.

An important characteristic of process control problems
is the presence of constraints on input, state and output vari-
ables. These constraints can be posed as

uL ≤ u(k + j|k) ≤ uU, 0 ≤ j ≤ M − 1,

�uL ≤ �u(k + j|k) ≤ �uU, 0 ≤ j ≤ M − 1,

xL ≤ x(k + j|k) ≤ xU, 1 ≤ j ≤ P − 1,

yL ≤ y(k + j|k) ≤ yU, 1 ≤ j ≤ P − 1

where the superscripts L and U stand for the admissible lower
and upper bounds for the variables. Therefore, the model
is used to predict the system response and, consequently, to
optimize it subject to constraints on input, output and state
variables.

From the explanation above, it can be found that some in-
formation about the state vector may be necessary. However,
the whole state vector is hardly ever available through mea-
surement. The simplest method to perform this correction

troller/
Fig. 7. NMPCon
 observer tracking.
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Fig. 8. NMPController/observer tracking based on noisy measurement.

is the use of an additive disturbance estimationd̂. This ap-
proach is widely used in linear MPC (for example in DMC).
The idea is to modify the output description given by Eq.(13)
as follows:

y(k) = h(x(k)) + d̂(k) (17)

with

d̂(k) = ym(k) − y(k|k),
d̂(k + j) = d̂(k), 1 ≤ j ≤ P − 1 (18)

where the process output measurementym(k) as well as the
disturbance, are considered constant along the prediction
horizonP. In order to provide more adequate variables esti-

mations, based on the available measured outputs, a suitable
state observer will be incorporated in this paper. The observer
can be used to bring information about the unmeasured vari-
ables of the process. The advantage of using a closed-loop
observer is that the internal state estimation will be more re-
liable than the estimation obtained by running the open-loop
model (specially in the presence of dynamics uncertainty or
in the case of unstable systems).

4.1. CSTR control

For the controller design, we use a discrete version of the
process model. The objective function to be minimized is

(noise-
Fig. 9. Temperature
 corrupted measurement).
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defined as follows:

fobj = Q

P∑
i=1

[C(i�t) − Csp]2 + R
M∑
i=1

[qc(i�t)

− qc((i− 1)�t)]2 + S
M∑
i=1

[qc(i�t) − qc(0)]2

whereCspis the set point for the controlled variable,Q = 8 ×
106, R = 500 andS = 0.005. The controller parameters were
tuned as follows: sample time�t = 0.1 min, the prediction
horizonP = 20 and the control horizonM = 5. To ensure
small steady-state error the constraint|C(P �t) − Css| < ε
is imposed to the control problem, whereε is a small positive
value. For the implementation of this scheme we consider
that the temperature is measured and the disturbanceCf is
unknown.

5. Simulation results

The developed observer/controller structure was tested for
the CSTR regulation purpose. The goal was to keep the con-
centration inside the CSTR equal to 0.1 mol/l, in the presence
of the unmeasured feed concentration disturbance. The good
p ed in
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Table 2
Controller’s performance index

Parameters (Q,R, S) Index,I

8 × 104,500,0.005 (case I) 6.2262× 10−8

8 × 106,500,0.005 1.2093× 10−8

8 × 107,500,0.005 Unstable
8 × 107,500,0.005 Unstable
8 × 106,50,0.005 Unstable
8 × 106,100,0.005 3.8323× 10−9

8 × 106,250,0.005 (case II) 7.2508× 10−9

8 × 106,750,0.005 (case V) 1.6205× 10−8

8 × 106,500,0.0005 1.2085× 10−8

8 × 106,500,0.001 (case III) 1.2086× 10−8

8 × 106,500,0.01 (case IV) 1.2102× 10−8

8 × 106,500,0.1 Unstable

tuning parameters was tested. First, the influence of the ob-
server’s design parameterK on the output was evaluated.
For this purpose, the gainK was increasedf times the initial
valueK = [ 20 300]T. The simulation results are depicted
in Fig. 5. The closed-loop system shows a stable behavior
for f between 0.25 and 8. For comparison purposes, a perfor-
mance index defined asI = (1/N)

∑N
k=1[C(k) − Csp] (for

N = 351 samples) was calculated. This index values goes
from 5.74× 10−7 to 1.57× 10−8 for f = 0.25 andf = 8,
respectively. It was also tested that the controlled system be-
comes unstable forf = 23. Secondly, a test was carried out
to evaluate the influence of the controller tuning on the sys-
tem output. Then, different values were assigned to the ob-
jective function parameters while the observer gain remains
beingK = [ 20 300]T. Table 2presents the controller per-
formance indexI for the different settings of the objective
function whileFig. 6shows some of the outputs. In this way
it was tested that the controlled system remains stable for a
wide set of tuning parameters around the proposed nominal
values.

The results inFig. 7, show the observer-based controller
is also able to track a reference signal. Another test for con-
centration tracking is shown inFig. 8. In this case, the infor-
mation is based on a noise-corrupted temperature measure-
ments. The measured temperature is constructed by adding
t ignal
w tem-
p

the
o criti-
c ation
a

6

ear
m . The
p full-
o ictive
c

erformance achieved by the observer/controller is plott
ig. 2 (dotted line). The controller’s parametersQ,R andS
ere set to 8 000 000, 500 and 0.005, respectively, an
bserver’s gain was set toK = [ 20 300]T. The controlle
erformance based on the nonlinear observer was com
ith the results obtained when a recursive least squares (
stimator[18] was added to the NMPController. RLS with
ectional forgetting together with the improved Euler met
ad been applied for the same CSTR[16], to estimate th
eagent concentration when its measurement is delayed
ame method and settings that in[16] were used in this work
he results are shown inFig. 2(full line). The simulation wa
ccomplished setting the forgetting factor to 0.9, the in
arameters vector equal to [1 1 0]. The initial value for the
ovariance matrix was set to 106I, with I the identity ma
rix. Both results depicted inFig. 2 were obtained for th
isturbance variation shown inFig. 3. From the results, th
roposed observer/controller structure evidences good

ormance to reject the disturbance. This is because the
ation provided by the observer converges to the actual
n the other hand, the RLS estimation shows an offset w

he unmeasured disturbance changes significantly.
To evaluate the observer/controller robustness for re

ion purpose in the presence of different feed concentr
ariations, additional simulations were performed. For
urpose, the same operation point was considered.Fig. 4
hows the system output when the disturbance is incre

times its nominal value. It was verified that the low
nd upper disturbance variations that destabilize the

em correspond toµ = 0.76 andµ = 1.095, respectively
oreover, the controller’s sensitiveness to changes in
o the real deterministic process output a white noise s
hose statistics are mean 0.50 and variance 0.34. The
erature inside the reactor is depicted inFig. 9.

These results illustrate the robust performance of
bserver-based controller, even when the CSTR is a
al nonlinear process under significant disturbance vari
nd in the presence of noisy measurements.

. Conclusions

In this work, the objective was to develop a nonlin
odel-based controller using nonlinear state estimation
urpose was accomplished by incorporating a nonlinear
rder state observer to the existing nonlinear model pred
ontrol theory.
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The developed controller results computationally efficient
and performs well, even in the case of regulation as well as
tracking. Additionally, the controller exhibits good behavior
when both the controller and the estimator use noisy mea-
surements.

The simulation results showed good agreement between
the actual and estimated states, as well as a successful behav-
ior of the controller/observer structure.

Appendix A

For the stability analysis introduced inSection 3.3, the
following functionV is proposed:

V = eT P0e,

V̇ = ėT P0e+ eT P0ė

= eTATc P0e+�ρTP0e+ ϕT u̇P0e+ eT P0Ace

+ eT P0�ρ + eT P0ϕu̇,

V̇ = eT (ATc P0 + P0Ac)e+ 2�ρTP0e+ 2ϕT u̇P0e (A.1)

with P0 a positive definite matrix. Due to Eq.(A.1), the fol-
lowing inequalities hold:

p

w n-
v si-
t
L

V

w
p
K

V

w√
ity

q

√

√

√
V ≤

√
V (0) e−σt + ξ

σ
[1 − e−σt ] ≤

√
V (0) e−σt + ξ

σ

(A.8)

and taking into account the inequalities in Eq.(A.2):

‖e‖ ≤ e−σt
√
pmax

pmin
‖e(0)‖ + ξ

σ
(A.9)

Denotingκ = √
pmax/pmin andλ = ξ/σ:

‖z− ẑ‖ ≤ κ e−σt‖z(0) − ˆz(0)‖ + λ (A.10)

Because

xu − x̂u = γi(z, y, u) − γi(ẑ, y, u) (A.11)

and

‖xu − x̂u‖ ≤ Lγi‖z− ẑ‖ (A.12)

with Lγi a Lipschitz constant forγi, and because‖z− ẑ‖ ≤
Lγ‖xu − x̂u‖, then

‖xu − x̂u‖ ≤ LγiLγκ e−σt‖xu(0) − x̂u(0)‖ + λ (A.13)

It should be noted that if the transformed system in Eq.(8)
does not depend on ˙u, thenM0 is zero. Besides,λ = 0 and
t ds
z l-
t the
d

to
g ather
c any
a ieved
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min‖e‖2 ≤ V ≤ pmax‖e‖2 (A.2)

herepmin andpmax are the minimum and maximum eige
alues ofP0, respectively. Provided that there exist po
ive valuesM0 andL0 such that‖ϕT u̇‖ ≤ M0 and‖�ρ‖ ≤
0‖e‖, then

˙ ≤ −qmin‖e‖2 + 2pmaxL0‖e‖2 + 2pmaxM0‖e‖ (A.3)

hereqmin is the minimum eigenvalue ofQ0, with Q0 a
ositive definite matrix solution of (A−KC)T P0 + P0(A−
C) = −Q0. Then:

˙ ≤ (−qmin + 2pmaxL0)
V

pmin
+ 2

pmax√
pmin

M0
√
V (A.4)

V̇

2
√
V

≤ −σ√V + ξ (A.5)

ith σ
�= qmin − 2pmaxL0/2pmin and ξ

�= pmaxM0/

pmin > 0. If K is chosen to satisfy the inequal
min > 2pmaxL0, thenσ > 0. From Eq.(A.5):

d
√
V

dt
≤ −σ√V + ξ

V ≤
√
V (0) e−σt +

∫ t

0
e−σ(t−τ)ξ dτ (A.6)

V ≤
√
V (0) e−σt + ξ e−σt

∫ t

0
eστ dτ (A.7)
hen the error‖xu − x̂u‖ converges asymptotically towar
ero ast → ∞. On the other hand, ifλ �= 0, there is an u
imate bound which can become smaller by changing
esign parameterK.

Note that Eq.(A.3) establishes a sufficient condition
uarantee stability. However, in some cases it may be a r
onservative result. As a consequence of this fact, in m
pplications good estimation performance could be ach
ven when Eq.(A.3) is not strictly satisfied.
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[4] S. Gerǩsič, D. Jurǐcic, S. Strm̌cnik, D. Matko, Wiener model bas
nonlinear predictive control, Int. J. Syst. Sci. 31 (2) (2000) 189–2

[5] A. Lussón Cervantes, O. Agamennoni, J. Figueroa, A nonlinear m
predictive control system based on Wiener piecewise linear mod
Process Contr. 13 (2003) 655–666.

[6] N. Ricker, Model predictive control with state estimation, Ind. E
Chem. Res. 29 (1990) 374–382.

[7] P. Sistu, B. Bequette, Nonlinear predictive control of uncertain
cesses: application to a CSTR, AIChE J. 37 (11) (1991) 1
1723.

[8] D. Nagrath, V. Prasad, B. Bequette, A model predictive formula
for control of open-loop unstable cascade systems, Chem. Eng. S
(2002) 365–378.



24 S.I. Biagiola et al. / Chemical Engineering Journal 106 (2005) 13–24

[9] G. Gattu, E. Zafiriou, Nonlinear quadratic matrix control with state
estimation, Ind. Eng. Chem. Res. 31 (1992) 1096–1104.

[10] V. Sundarapandian, Global observer design for nonlinear systems,
Math. Comput. Model. 35 (2002) 45–54.

[11] R. Aguilar, R. Mart́ınez-Guerra, A. Poznyak, Reaction heat estimation
in continuous chemical reactors using high gain observers, Chem. Eng.
J. 87 (2002) 351–356.

[12] N. Kazantzis, C. Kravaris, R. Wright, Nonlinear observer design for
process monitoring, Ind. Eng. Chem. Res. 39 (2000) 408–419.

[13] M. Henson, D. Seborg, Input–output linearization of general processes,
AIChE J. 36 (1990) 1753–1757.

[14] J. Gauthier, H. Hammouri, S. Othman, A simple observer for nonlinear
systems. Applications to bioreactors, IEEE Trans. Automat. Contr. 37
(1992) 875–879.

[15] R. Garćıa, C. D’Attellis, Trajectory tracking via nonlinear reduced-
order observers, Int. J. Contr. 62 (3) (1995) 685–715.

[16] J.D. Morningred, B.E. Paden, D.E. Seborg, D.A. Mellichamp, An adap-
tive nonlinear predictive controller, Chem. Eng. Sci. 46 (1992) 755–
762.

[17] J. Lee, N. Ricker, Extended Kalman filter based nonlinear model pre-
dictive control, Ind. Eng. Chem. Res. 33 (1994) 1530–1541.

[18] E. Walter, L. Pronzato, Identification of Parametric Models: From Ex-
perimental Data, Springer-Verlag, 1997.

[19] E.S. Meadows, J.B. Rawlings, Model predictive control, in: M.A. Hen-
son, D.E. Seborg (Eds.), Non-linear Process Control, Prentice-Hall,
Englewood Cliffs, NJ, 1997, p. 233.


	Use of state estimation for inferential nonlinear MPC: a case study
	Introduction
	Problem statement: the stirred-tank reactor (CSTR)
	3Nonlinear estimation
	Model reformulation
	Observer
	Convergence of estimation error
	Application to the CSTR

	4Nonlinear model predictive controller
	CSTR control

	Simulation results
	Conclusions
	Appendix A
	References


