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Abstract

Model predictive control (MPC) has become very popular in process industry and academia because it is an optimizing control technique
which can handle hard constraints as well as time delays and mild nonlinearities. Linear MPC may control nonlinear processes by obtaining a
linearized model of the plant, however, this approach is only valid in a limited region. In the presence of marked nonlinearities, a substantial
improvement can be achieved by using the whole knowledge of the process dynamics.

The use of a nonlinear model for MPC involves the knowledge of the complete state vector and the most significative perturbations in order
to obtain the best performance. However, this information may not be directly available through measurement. In this paper, we propose the
use of a nonlinear estimator to update the state vector and to infer the unmeasured perturbations.

All the development herein presented is in the context of the control of an open-loop unstable nonlinear reactor with a measurement delay
in the controlled variable.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Nonlinear model predictive control; State estimation; Inferential control

1. Introduction been achieved using MPC in the case of non-minimum phase
processes or systems with input constraints where future set
Most control applications involve hard constraints on con- points are known, as well as for stabilizing unstable linear
trols and states, however, there is a shortage of design proplants[2]. Moreover, this control scheme has also proven to
cedures to deal with such constraints. To cope with this fact, be useful for regulating many nonlinear plants. Many recent
model predictive control (MPC) has emerged and now it is attempts to include nonlinear models in MPC have shown su-
widely adopted. It is a well-known result that MPC has often perior performance, particularly for applications where vary-
shown to provide improved performance than conventional ing operating conditions over nonlinear regions are expected
feedback control schemes, specially in the presence of re-[3-5]. In this article we will use a first principle nonlinear
strictions related to valve sizes and actuator dynamics. Themodel to predict the behavior of the process. In the approach
use of MPC in the chemical engineering field started in the herein followed, the knowledge of the complete state vec-
process industries, which is not a common fact among othertor and the most relevant perturbations is crucial in order to
control technigues. This situation is basically due to flex- obtain good performance of the control strategy.
ible constraint-handling capabilities of MPC as well as its Because the inherent feature of MPC is the reiterated op-
robustness propertigd]. The essential feature of MPC is timization of an open-loop performance objective over the
the employment of an explicit model to predict the effect of prediction horizon, there are many methods available in or-
future control actions on the outputs. This capacity for predic- derto update the optimization problem. For instance, the reset
tion allows solving optimal control problems on-line, where a of the model’s initial conditions, estimation of model's pa-
specified objective function is minimized over a future hori- rameters and/or states or inference of output disturbances can
zon. As regards linear plant control, superior behavior has be performed. The advantages of employing state estimation
instead of the frequently used approach of the additive out-
* Corresponding author. Tel.: +54 291 4595153; fax: +54 291 4595154. Put disturbance (commonly used in dynamic matrix control),
E-mail addressfigueroa@uns.edu.ar (J.L. Figueroa). have been shown by Ricki]. He used linear, time-invariant
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state-space models and applied state estimation theory. Sist@. Problem statement: the stirred-tank reactor

and Bequett§7] addressed many important issues in nonlin- (CSTR)

ear predictive control of chemical processes. They treated the

selection of initial state conditions as a very important fact, = The simulated continuous stirred-tank reactor (CSTR)
especially under plant/model mismatch. To cope with this is- process consists of an irreversible, exothermic reactior(A
sue they introduced a nonlinear programming-based proces®), in a constant volume reactor cooled by a single coolant
identification scheme. streanyc. The whole process can be modeled by the follow-

The inclusion of a state observer is an interesting alter- ing equation$16]:
native for estimating state variables, particularly when many E
of them are unmeasurable. The use of state observers based = i[cf — C] — koC exp(_—> (1)
on measured outputs has already been considered for solving RT
state-space formulations of MPC problems. However, those
approaches are basically limited to the use of Kalman filters _ z(To _7)-— ko AHC exp<_—E>
[8]. A particular drawback in using the Kalman filter for non- Vv pC, RT
linear control purposes is the linear nature of the estimator. c hA
Gattu and Zafirio9] introduced state estimation into non- 4 Pepe gc [1 — exp<——)] Teo—=T7) (2)
linear quadratic dynamic matrix control (NLQDMC). They rCpV qcpcCpe
used a steady-state Kalman filter which is based on a locally The state variable€ andT stand for the reactant concentra-
linearized model and it must be redesigned at each time stepyjon and the reactor temperature, respectively. The sygibol
Additionally, the assumptions on the state noise can lead toyepresents coolant flow rate and the other symbols are con-
significant biases in the state estimates, limiting its applica- stant parameters whose values are defindbie 1
bility and performance. Moreover, when linearization tech-  aAn important fact regarding the implementation of the
niques are applied, convergence and speed of convergencgontrol actionis the existence of atime delay-¢ 0.5 min)in
are local properties, i.e. the estimation error can converge inthe concentration measurement, he@gadt) = C(t — tq).

a given time interval and diverge in another one. The objective is to control the concentratiGiy manipulat-

In spite of the fact that theories and applications for linear iy the coolant flow ratec.
systems are well developed, the highly nonlinear essence of The disturbances are the unmeasured feed concentration
many processes has givenrise to the developmentofnonlineag; and the measured coolant temperatiige This model
observer410]. These observers are designed in such away js a modified version of the first tank of a two-tank CSTR
that they can cope with the intrinsic nonlinearities and can example by Henson and Seb@tg]. However, in the original
be useful, for example, for on-line estimation in chemical mgge| the time delay was zero, which was a simplification
processegl1,12] for control purposes.

In this work, we present a nonlinear efficient state  The process dynamics are nonlinear because the reaction
estimator to provide to the nonlinear model predictive rate is governed by the Arrhenius law. That is why the CSTR
controller (NMPC) the estimated value of the internal state eyhipits some operational and control problems. The steady-
and the most significative disturbances of the process. Thegtate values fo€ versus the inputc are plotted inFig. 1
observer implementation is simple and it requires small \hich shows the reactor presents multiplicity with respect to
computational effort. the coolant flow rate. The CSTR modeled by Ed3and (2)

The observer/controller design can be applied forageneralpehaves as an open-loop unstable system if the concentration
type of nonlinear process models. In this paper we present theinside the reactor is between 0.14 and 0.92. In particular, the
approach in the form of a case study: the control of an open- noint A (4. ~ 11185 I min~1)in Fig. 1, is a Hopf bifurcation

loop unstable reactor. It must be highlighted that this process pgint. In our application, one of the objectives is to operate
has been widely studied because it is highly nonlinear, and it

is known to be an interesting challenge to overcome by any tapje 1
new control technique proposal due to the following features: Process parameters

e The controlled output is measured with a significant delay. Parameter Value

e The process includes a crucial perturbation which is un- Process flow rate (| min~?) ) 100
measurable. Feed concentration;; (moll~1) 1

e Th is highl i tth fi int and Feed temperaturdp (K) 350
e process is highly nonlinear at the operating pointand |+ coojant temperaturazo (K) 350
close to an unstable region. CSTR volume (I) 100

. . . . Heat transfer termi A (cal min 1 K1) 7 x 10°
The yvork is organlzed as follows. Thelreactor is presgnted IN Reaction rate constarity (min-1) 72 % 1010
Section 2In Section 3he observer design procedure is dealt  activation energy terme/R (K) 104
with. The controller synthesis is developediaction 4 The Heat of reactionA H (cal mol1) —2x10°
results are presented via simulatiorSaction 5 Finally, in Liquid densitiesp, pc (9171 10°

. . i lp-1
Section 6the conclusions are drawn. Specific heatsC’,,, Cyc (cal g™~ K™) 1
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Fig. 1. Steady-state valueg ¢s. qc).
the process at constant concentratios: 0.1 mol 1=, which (3) is posed as follows:

implies thatgc = 10341 I min~2.
Posed in these terms, the use of this model for nonlinear B
MPC presents two main difficulties: y = H(xy, xu)

Xy = Fu(xu, ;u, M), ;u = fu(xu, ;u, M),

e Due to the high nonlinearity (and the nearness to the un- wherex, stands for the unmeasured states in vert@and
stable operation region), it is necessary to know precisely the rest of the states are symbolizedrasProvided thatc,

the process state and the perturbations values. can be written as
¢ The measurement delay of the controlled variable limits B
the performance achievable by the control algorithm. xu= H(xy, )

To overcome these obstacles, the proposed control strateg){hen
includes the design of an observer to infer the values of the
product concentration and the feed concentration. Inthe next ; _ 9H + M = 8 e Fix D2 oo v
section, we describe this observer. YT o VT o Y (rus Hxu, 3). 4) = golxu, . u).

. = A
xu = Fulxu, H(xy, y), u) = gx(xu, y, u)

3. Nonlinear estimation Therefore, the system can be rewritten as follows:

The objective of this section is to design an observer for xu = gx(xu, y, u) (4)
estimating the unmeasured states to be used in the control
calculation. Let us consider that the nonlinear model for the > = go(xu, v, u) ©)
process is given by The construction of the nonlinear observer herein proposed
¥ = fr ) v = h(x) 3) makes use of_a changg of coordinate;, whic;h has been fre-

T quently used in the design of high gain nonlinear observers
where the vectar € 9" stands for the state vector and the in-  [14,15] Then, the following transform is introduced:
putu € N represents the manipulated variable to accomplish

the control objective and € 9% is the system’s output. 21 = go(xu, y, u)
A
: 22 = g1lxu, y, u
3.1. Model reformulation s, 3. u) (6)
The objective is to estimate only those states that cannot A

be measured. Then, a suitable reformulation of the system?n—-1 = gn—2(xu, y, )
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This transform can be expressed in briefas y(xy, y, u) =
[gog1- gn2l";zeR L
The dynamics in thedomain are given by:

. A
¥y = z1 = golxy, y, u)

. ago
1= [—gx(xu, v, u) +
a.Xu

90

020 .
go(xu, y, u) + iu}
dy

ou
A .
= gl(-xU1 Y, M) + pl(-xl.la Y l/t) + gﬂl()(:u, Y, M)M

. dg1 0g1 0g1 .
22 = | - &x(xu, y, u) + ——golxu, y, u) + -t
BXU ay du

A .
= ga(xu, y, u) + p2(xu, y, u) + @2(xy, y, u)u

. 0gn—2 0gn—2 0gn—2.
Zno1= | ——gx(xu, v, )+ ——=go(xu, . u) + ——1t
axy ou

. A .
Zn—1 = gn—1(xu, ¥, u) + pp—1(xu, y, ) + @u—1(xu, y, u)u

(7)

where

ogj-1 ogj-1 9gj-1
gx_gjv 8y gO—p]: aI/L

8)Cu - QDJ’

j=1...,n

If 9y/dxy is not singularinfy, y, u), then there existg such
thatxy = y'(z, y, u) is the function which allows calculating
xy from z, y andu. Therefore, the process model in the

domain is:
z=Az+ p(z, y, u) + ¢(z, v, u)it (8)
with zen 1, p=1[p1-- pn—l]T|xu:)/i(Z.,y,u)’ ¢ =

(o1 on-1]"limyi(ey) ANA € RO-Dx(=1):

o 1 0 --- 0

o o 1 ---0
A=

0 1

_0 0_

3.2. Observer

The following observer is proposed to estimate the state

vector in the transform domain

t=AZ+p@ oy + K[y -2 vEI-Ky (9
Then,
b =2—Kj, v=AW+ Ky)+ p(v+ Ky, y, u)

— K(v1 + k1Y) (10)

with k1 the first element of vectdf.

Note thatin the proposed observer, the condfargctor is _
the unique parameter to be designed. This parameter has to be oCp

calculated for guaranteeing the estimation error convergence.
However, the observer is implemented through @4) to
diminish the influence of measurement noise on the estimates.

3.3. Convergence of estimation error

Although the observer is implemented by using Bd)),
Eqg. (9) can be used to desidgf

z=Az+ p(z, y, u) + ¢z, y, ui,
Z=AZ+p(z, y,u) + KC(z - 2) (11)

Lete 2 z — 7 be the estimation error incoordinates, then

VAN A .
e=z—272=Ace+ Ap+o(z,y, u)u (12)

withC =[10---0], Ap =% p(z, y, u) — p(Z, v, u) andA¢ =

(A — KC). To accomplish the observer’s stability analysis,
the dynamics of the erre(z) in Eq.(12)is evaluated. In this
way, a connection between the design param€tand the
stability of the estimation algorithm is obtained. A detailed
description of the analysis procedure is providedppendix

A. It should be noted that if the transformed system in(B}.
does not depend an(that indeed occurs in many systems),
then the estimation error converges asymptotically towards
zero ag — oo. Otherwise, there is an ultimate bound which
can become smaller by changing the design pararigtsze
Appendix A).

3.4. Application to the CSTR

The state observer developed above is dedicated to the es-
timation of the internal state of the open-loop unstable CSTR.
We know from the description iSection 2that the tempera-
tureT inside the reactor is measured on-line, but the measure-
ment ofC is significantly delayed. Moreover, the system is
perturbed by the unknown inlet concentration Therefore,
the goal is to obtain an on-line estimation@&ndCs based
on the measured variableTo accomplish the estimation, the
state vector is expanded to include the disturbaryc& hen,
the estimated vector ig, = [ C Ct]. Under the assumption
that there is no information about the dynamic€pfthen it
is assumed slowly varying (i.€s = 0).

For simplicity and to achieve better convergence proper-
ties, we choose a suitable transform to eliminate in (By.
the dependence an

_ dg ) F0AH o /rr
71 = V(To T) c, Ce ,

2= —i—kOAHCie*E/RT
V. pC, RT?

ko AH
x [%(TO—T)— 0 Ce—E/RT]

oCp

ko AH C e E/RT
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This selection coincides with the expressionsToaind 7 Although in many applications in the field of nonlinear
without including the terms that contain the inggt Then, processes the control problem is solved via Taylor lineariza-
the original states can be recovered from the transformed onedion techniqueg17], it is possible to achieve an improved
as follows: control performance from an exploitation of the exact non-
linear model structure using nonlinear control techniques. In
eE/RT NMPC the model of the process is formulated through non-
C= B (1T — a1 Ti + z2), linear differential equations. This control strategy involves
R a computation at each sampling ti_m.e i_n order to predict the
Cr = _eE [(alT —oaaTi +21) (—ozl — koe E/RT vglqes of future Qutputs_and thg minimization of outputs de-
a181 viations from their setpoints. This information is obtained for
Ezq calculating the future manipulated vgriables. _
+ W) — Q121 — zz} The sequence of steps to follow in order to achieve the
control action can be described as follows. First of all, the

) ) nonlinear original model of statesthe outputy and control
with g = ¢/V and g1 = —AHko/pCp. In this way, a stg— inputu is the one given by Eq3):
ble reduced-order observer (i.e., only unmeasured variables
are estimated) is applied for the nonlinear system to attainy = f(x, u), y = h(x)
on-line estimation of the unmeasured process state and per-
turbation. Note that nonlinear observers such as the ones in-The Euler discretization of this system gives:
troduced in[14,15fre not suitable for this application. Be-
cause there is only one measured state and two variables tox((k + 1) A1) = Fx(k Ar), u(k An),
estimate, those full-order observers (i.e., both measured and y(k Ar) = h(x(k At))
unmeasured vectors are estimated) would not satisfy the re- . L .
quirement due to the observability constraint. Moreover, the wh_ereAt is the sampling time. For brevity, the model can be
reduced-order observer like the one developdd®hcannot written as follows:
estimate bottC an_dCf, and other reduced-_order tech_niques x(k + 1) = F(x(k), u(k)), y(k) = h(x(k)) (13)
such as the ones introducedi2,11]would involve tedious
calculation and the convergence of the estimation error to- The optimization problem for the typical NMPC formulation
wards zero cannot be achieved. is [19]:

Note that the observer herein introduced can be easily in
implemented and it is only based on the temperature mea- u(k[k),u(k+1/k),...,u(k+M—1|k)
surement. Moreover, the observer is built using the whole o1
process model, and this nonlinear procedure avoids losing . . .
information about the dynamics as well as simplifications, + Z LI+ 1R, uk + jik). Auk+ jIk]. (14)
order reduction or the frequently used linearization methods.

Once the internal state of the system and perturbation canwhereu(k + 1[k) is the inputu(k + 1) calculated from infor-
be observed, the nonlinear model predictive control tech- mation available at timk, y(k + 1|k) the outputy(k + 1) cal-
nique based on state knowledge can be performed to achieveulated from information available at tinkg Au(k + j|k) =
the desired control goal. This will be studied in the next u(k + jlk) —u(k 4+ j — 1|k), M the control horizonP the
section. prediction horizon ang andL are (possibly) nonlinear func-
tions of their arguments. The optimization problem is solved
subject to the constraints discussed below. The functions
andL can be chosen to satisfy a wide variety of objectives.
In many applications, it is meaningful to consider quadratic
functions of the following form:

J = ¢ly(k + Plk)]

Jj=0

4. Nonlinear model predictive controller

When applying MPC, the controller is designed in order
to generate a manipulated variable profile to optimize some 1, = [y(k + j|k) — ys(k)]T Q[y(k + jlk) — ys(k)]
open-loop performance objective on a time inteR&hown ; T )
as prediction horizon. The feedback loop is incorporated be- ~ + [u(k + jlk) —us(k)]" Ru(k + jlk) — us(k)]

cause the measurement is used to update the optimization + Auk + jI)TS Au(k + jk) (15)
problem for the next time step. In the MPC strategy, the cur-
rent control action arises from the solution of an on-line, finite ¢ = [y(k + PIk) — ys(®)]T O[y(k + Plk) — ys(K)], (16)

horizon open-loop optimal control problem. This problem is

solved at each sampling instant, using the current state of thewhereus(k) and ys(k) are steady-state targets forandy,
plant as the initial state. Once the optimization is performed, respectivelyQ is a symmetric positive semi-definite penalty
an optimal control sequence is obtained and only the first matrix on the state®} a symmetric positive definite penalty
control in the sequence is implemented on the plant. matrix on the inputs, anfla symmetric positive semi-definite
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Fig. 2. Regulation results. NMPC based on RLS (full line) and NMPC based on NO (dotted line).

penalty matrix on the rate of change in the inputs. The prin- tions yield

cipal controller tuning parameters a¥¢ P, O, R, S and the

samp_le periodﬁt. Itis important to note that this objective  y(k + 1|k) = h[x(k + 1/k)] = h[F[x(k|k), u(k|k)]]
function is the most used in the literature, however, some = Gi[x(k), u(kIK)]

authors use a more general approach and replace the output ’
vectory(k + jlk) by the state vector(k + jlk). Thisequiva- ~ Y(k +21k) = Gax(k + 1K), u(k + 1[k)]

lent formulation has the drawback that in some applications = G1[ F[x(k|k), u(k|k)], u(k + 1|k)]
the reference value for the states are not available (see exam- = Go[x(k), u(k|k), u(k + 1|k)]
ple section).

The predicted output is obtained from the nonlinear model :
given by Eq.(13). Successive iterations of the model equa- y(x + jjk) = G j[x(k), u(klk), ..., ulk + j — 1K)],
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0.995

0.99

Feed concentration [mol/l]

0.985

0.98

0.975 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Time [min]

Fig. 3. Observer-based NMPC regulation.
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Fig. 4. Influence of the disturbance on the controller’s performance.

wherex(k|k) = x(k) is a vector of current state variables. The Solution of the NMPC problem yields the input se-
control horizonM should be less than the prediction horizon quence:u(k|k), u(k + 1|k), ..., u(k + M — 1|k). Only the

P. Then, the output prediction is generated by setting in- first input vector in the sequence is actually implemented:
puts beyond the control horizon equal to the last computed u(k) = u(k|k). Then, the prediction horizon is moved for-
value:u(k + jlk) = u(k + M — 1|k), M < j < P. Note that ward one time step, and the problem is solved using
the predictiony(k + j|k) depends on the current state vari- new process measurements. This receding horizon for-
ables, as well as the calculated input sequence. Thereforemulation yields improved closed-loop performance in the
NMPC requires measurements or estimates of the state varipresence of unmeasured disturbances and modeling er-
ables. This is discussed in more detail below. rors.

0.11 T T T T T T

N
(3]

i
©N = O

oo
—h =h = =

0.105

C [mol/l]

0.1 £ Eiy-EDVED- SR/

0.095 1 1 L L 1 1
0 5 10 15 20 25 30 35

time [min]

Fig. 5. Influence of the observer’s gain.
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Fig. 6. Influence of the tuning parameters.

An important characteristic of process control problems where the superscripts L and U stand for the admissible lower
is the presence of constraints on input, state and output vari-and upper bounds for the variables. Therefore, the model

ables. These constraints can be posed as is used to predict the system response and, consequently, to
. U optimize it subject to constraints on input, output and state

u- <u(k+jlk)<u-, 0<j<M-1, variables.

Aut < Au(k+ jlk) < A¥, 0<j<M—1, From the explanation above, it can be found that some in-

formation about the state vector may be necessary. However,
the whole state vector is hardly ever available through mea-
V<yk+ )<y, 1<j<P-1 surement. The simplest method to perform this correction

x<x(k+jlk)<aY, 1<j<pP-1,

0.16 T T T T

Concentration [mol/l]

0»04 1 1 1 1 1 1 1

Time [min]

Fig. 7. NMPController/observer tracking.
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Fig. 8. NMPController/observer tracking based on noisy measurement.
is the use of an additive disturbance estimatiofhis ap- mations, based on the available measured outputs, a suitable
proach is widely used in linear MPC (for example in DMC). State observer will be incorporated in this paper. The observer
The idea is to modify the output description given by ) can be used to bring information about the unmeasured vari-
as follows: ables of the process. The advantage of using a closed-loop
- observer is that the internal state estimation will be more re-
y(_k) = h(x(k) + d(k) (17) liable than the estimation obtained by running the open-loop
with model (specially in the presence of dynamics uncertainty or
d(k) = ym(k) — y(klk), in the case of unstable systems).
d(k+j)=d(k), 1<j<P-1 (18)

4.1. CSTR control

where the process output measuremgytk) as well as the

disturbance, are considered constant along the prediction For the controller design, we use a discrete version of the
horizonP. In order to provide more adequate variables esti- process model. The objective function to be minimized is

452 T T T T

450 =

448+ -

446 -

444 e

442 - -1

440 | .

Temperature [K]

438

436 - —

434 1 4

432 1 1 1 1
0 5 10 15 20 25
Time [min]

Fig. 9. Temperature (noise-corrupted measurement).
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defined as follows: Table 2
P " Controller’s performance index
fobj =0 Z[C(iAt) _ Csp]Z +R Z[QC(iAt) Parameters@, R, S) Index, |
i—1 i—1 8 x 10%, 500, 0.005 (case ) 2262x 1078
8 x 10°, 500, 0.005 12093x 1078
. 5 Mo ) 8 x 107, 500, 0.005 Unstable
—gc((i — DANP + S ) [gc(iAr) — gc(0)] 8 x 107,500, 0.005 Unstable
i—1 8 x 10°, 50, 0.005 Unstable
) ) ) 8 x 10°, 100, 0.005 38323x 107°
whereC®Pis the set point for the controlled variabg,= 8 x 8 x 108, 250, 0.005 (case II) 72508x 10-2
108, R = 500 andS = 0.005. The controller parameterswere 8 x 10°, 750, 0.005 (case V) $205x 1078
tuned as follows: sample tim&s = 0.1 min, the prediction 8 x 10°,500,0.0005 12085x 10’2
horizon P = 20 and the control horizoM = 5. To ensure 2 182 ggg 8'821(0(;2:‘7\'/')') e
_ . _ sS X s A X
small steady-state error the constrdifif? At) — C39 < ¢ 8 x 10°. 500, 0.1 Unstable

is imposed to the control problem, wheris a small positive
value. For the implementation of this scheme we consider
that the temperature is measured and the disturb&née tuning parameters was tested. First, the influence of the ob-
unknown. server's design paramet& on the output was evaluated.
For this purpose, the gak was increasetitimes the initial
value K = [20 300]T. The simulation results are depicted
5. Simulation results in Fig. 5. The closed-loop system shows a stable behavior
for f between 0.25 and 8. For comparison purposes, a perfor-
The developed observer/controller structure was tested formance index defined as= (1/N) Z,ﬁ’:l[C(k) — C3P] (for
the CSTR regulation purpose. The goal was to keep the con-N = 351 samples) was calculated. This index values goes
centration inside the CSTR equal to 0.1 mol/l, in the presence from 5.74 x 10~7 to 1.57 x 108 for f = 0.25 andf = 8,
of the unmeasured feed concentration disturbance. The goodespectively. It was also tested that the controlled system be-
performance achieved by the observer/controller is plotted in comes unstable fof = 23. Secondly, a test was carried out
Fig. 2 (dotted line). The controller's parametads R andS to evaluate the influence of the controller tuning on the sys-
were set to 8000 000, 500 and 0.005, respectively, and thetem output. Then, different values were assigned to the ob-
observer’s gain was set t§ = [20 300]". The controller jective function parameters while the observer gain remains
performance based on the nonlinear observer was comparedbeing K = [ 20 300]". Table 2presents the controller per-
with the results obtained when arecursive least squares (RLSYormance index for the different settings of the objective
estimatof18] was added to the NMPController. RLS with di-  function whileFig. 6 shows some of the outputs. In this way
rectional forgetting together with the improved Euler method it was tested that the controlled system remains stable for a
had been applied for the same CSJE], to estimate the  wide set of tuning parameters around the proposed nominal
reagent concentration when its measurement is delayed. Thevalues.
same method and settings thafi6] were used in this work. The results irFig. 7, show the observer-based controller
The results are shown Fig. 2(full line). The simulationwas s also able to track a reference signal. Another test for con-
accomplished setting the forgetting factor to 0.9, the initial centration tracking is shown ifig. 8. In this case, the infor-
parameters vector equal ta [L 0]. The initial value for the mation is based on a noise-corrupted temperature measure-
covariance matrix was set to @0 with | the identity ma- ments. The measured temperature is constructed by adding
trix. Both results depicted ifFig. 2 were obtained for the  to the real deterministic process output a white noise signal
disturbance variation shown Fig. 3. From the results, the = Whose statistics are mean 0.50 and variance 0.34. The tem-
proposed observer/controller structure evidences good per-erature inside the reactor is depictedrig. 9.
formance to reject the disturbance. This is because the esti- These results illustrate the robust performance of the
mation provided by the observer converges to the actual state Observer-based controller, even when the CSTR is a criti-
On the other hand, the RLS estimation shows an offset whencal nonlinear process under significant disturbance variation
the unmeasured disturbance changes significantly. and in the presence of noisy measurements.
To evaluate the observer/controller robustness for regula-
tion purpose in the presence of different feed concentration
variations, additional simulations were performed. For this 6. Conclusions
purpose, the same operation point was considereyl. 4
shows the system output when the disturbance is increased In this work, the objective was to develop a nonlinear
wu times its nominal value. It was verified that the lower model-based controller using nonlinear state estimation. The
and upper disturbance variations that destabilize the sys-purpose was accomplished by incorporating a nonlinear full-
tem correspond tw = 0.76 andp = 1.095, respectively.  order state observer to the existing nonlinear model predictive
Moreover, the controller’'s sensitiveness to changes in the control theory.
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The developed controller results computationally efficient
and performs well, even in the case of regulation as well as

tracking. Additionally, the controller exhibits good behavior

when both the controller and the estimator use noisy mea-

surements.

The simulation results showed good agreement between

. _ _ Pma §
the actual and estimated states, as well as a successful behay,|| < e~ —_X||e(0)|| +

ior of the controller/observer structure.

Appendix A

For the stability analysis introduced Bection 3.3 the
following functionV is proposed:

V = eTPoe,
V = el Pye + e Pye
= e AL Poe + Ap" Poe + T it Poe + e PoAce
+ e Porp + T Pogi,

V = el (AL Py + PoAc)e + 2ApT Poe + 29T iPge (A1)

with Py a positive definite matrix. Due to E¢A.1), the fol-
lowing inequalities hold:

pminllel? < V < pmaxlell® (A.2)

wherepmin and pmax are the minimum and maximum eigen-
values of Py, respectively. Provided that there exist posi-
tive valuesMg and Lo such that|e”u|| < Mo and | Ap|| <
Lolle]l, then

V < —gminllell® + 2pmaxLollell® + 2pmaxMollell  (A.3)

where gmin is the minimum eigenvalue oo, with Qg a
positive definite matrix solution of — KC) Py 4+ Po(A —
KC) = —Qq. Then:

: 14 Pmax
V < (—gmin+ 2 Lo + 2 MoVv'V A4
(Tdmin +2pmaxk o), A2 (A4)
v <—0ovV+E (A.5)
—— < -0 .
2JV
. A A
with o = gmin — 2pmaxLo/2pmin ~ and & = pmaxMo/

VPmin > 0. If K is chosen to satisfy the inequality
gmin > 2pmaxLo, theno > 0. From Eq(A.5):

NG

7‘/ =< —G\/V-f-g
VV </V(0)e + / t e g dr (A.6)
0
VV < JV(0)e " + e /te‘” dr (A7)
0

VV < /VO)e + 5[1 —e 7 < /V(0)e” + é
(A.8)

and taking into account the inequalities in EA4.2):

= (A.9)

min o

Denotingx = /pmax/ Pmin andi = &/
Iz = 2]l < k& 12(0) — z(O)I| + » (A.10)
Because
xu—Xu=7(y,u) = V' E yu) (A.11)
and
llxu = Xull = Lyillz = 2|l (A.12)

with L, a Lipschitz constant fop!, and becaustz — z|| <
Ly |lxy — Xull, then

llxy — Zull < L,iLyk e 7 |lxy(0) — Xu(O)|| + A (A.13)

It should be noted that if the transformed system in ).
does not depend an, thenMy is zero. Besides, = 0 and

then the errot|xy, — xy|| converges asymptotically towards
zero ag — oo. On the other hand, if £ 0, there is an ul-
timate bound which can become smaller by changing the
design parameté.

Note that Eq.(A.3) establishes a sufficient condition to
guarantee stability. However, in some cases it may be a rather
conservative result. As a consequence of this fact, in many
applications good estimation performance could be achieved
even when Eq(A.3) is not strictly satisfied.
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